Optimized and Controlled Provisioning of Encrypted Outsourced Data

Anis Bkakria1 Andreas Schaad2 Florian Kerschbaum2 Nora Cuppens-Boulahia1 David Gross-Amblard3

1Télécom Bretagne, Rennes, France
2SAP AG, Karlsruhe, Germany
3Université de Rennes 1, Rennes, France

\textit{SACMAT 2014, London, ON, Canada.}
Contents

1 Introduction
 - Context and Goal
 - Problem
 - Our Contribution

2 Policy Configuration
 - System modeling
 - Policy modeling
 - Policy conflict detection
 - Policy satisfaction

3 Conclusion and future work
Contents

1 Introduction
 - Context and Goal
 - Problem
 - Our Contribution

2 Policy Configuration
 - System modeling
 - Policy modeling
 - Policy conflict detection
 - Policy satisfaction

3 Conclusion and future work
Contents

1 Introduction
 - Context and Goal
 - Problem
 - Our Contribution

2 Policy Configuration
 - System modeling
 - Policy modeling
 - Policy conflict detection
 - Policy satisfaction

3 Conclusion and future work
Introduction
- Context and Goal
- Problem
- Our Contribution

Policy Configuration
- System modeling
- Policy modeling
- Policy conflict detection
- Policy satisfaction

Conclusion and future work
Context and Goal

- **Security, privacy**: major issues impacting the uptake of cloud computing, particularly in public database outsourcing.

- **Industrial Database**: Data querying efficiency → Data Utility

- **Goal**: Get an optimal balance between security and functionality
Context and Goal

- **Security, privacy**: major issues impacting the uptake of cloud computing, particularly in public database outsourcing.

- Industrial Database: Data querying efficiency → Data Utility

- Goal: Get an optimal balance between security and functionality
Implementing SQL Queries over encrypted data representation.

- Fully Homomorphic Cryptosystem
 - No efficient implementation of fully homomorphic system.
- Adjustable Encryption
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].
Problem

Implementing SQL Queries over encrypted data representation.

- **Fully Homomorphic Cryptosystem**
 - No efficient implementation of fully homomorphic system.

- **Adjustable Encryption**
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].
Problem

Implementing SQL Queries over encrypted data representation.

- **Fully Homomorphic Cryptosystem**
 - No efficient implementation of fully homomorphic system.
- **Adjustable Encryption**
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].
Problem

Implementing SQL Queries over encrypted data representation.

- Fully Homomorphic Cryptosystem
 - No efficient implementation of fully homomorphic system.
- Adjustable Encryption
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

\[a_1 \leq 100 \]
Problem

Implementing SQL Queries over encrypted data representation.

- Fully Homomorphic Cryptosystem
 - No efficient implementation of fully homomorphic system.
- Adjustable Encryption
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

\[a_1 \leq 100 \]

→ Big Databases: The adjustment process can be quite costly.
Problem

Implementing SQL Queries over encrypted data representation.

- Fully Homomorphic Cryptosystem
 - No efficient implementation of fully homomorhopic system.
- Adjustable Encryption
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

\[a_1 \leq 100 \]

→ Big Databases: The adjustment process can be quite costly.
→ How to prevent specific data from reaching a specific encryption state?
Problem

Implementing SQL Queries over encrypted data representation.

- Fully Homomorphic Cryptosystem
 - No efficient implementation of fully homomorphic system.
- Adjustable Encryption
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

→ Big Databases: The adjustment process can be quite costly.
→ How to prevent specific data from reaching a specific encryption state?
Implementing SQL Queries over encrypted data representation.

- **Fully Homomorphic Cryptosystem**
 - No efficient implementation of fully homomorphic system.

- **Adjustable Encryption**
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

→ Big Databases: The adjustment process can be quite costly.
→ How to prevent specific data from reaching a specific encryption state?
Implementing SQL Queries over encrypted data representation.

- **Fully Homomorphic Cryptosystem**
 - No efficient implementation of fully homomorphic system.

- **Adjustable Encryption**
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

→ Big Databases: The adjustment process can be quite costly.
→ How to prevent specific data from reaching a specific encryption state?
Problem

Implementing SQL Queries over encrypted data representation.

- **Fully Homomorphic Cryptosystem**
 - No efficient implementation of fully homomorphic system.
- **Adjustable Encryption**
 - The use of property-preserving encryption.
 - Adjustable “onion” encryption [Popa’11].

→ Big Databases: The adjustment process can be quite costly.
→ How to prevent specific data from reaching a specific encryption state?
→ Which encryption mechanisms to use for each attribute?
Our Contribution

- **Policy configuration**
 - Specify the policy to be applied over the outsourced data
 - Sensitive attributes
 - Security requirements
 - Utility requirements
 - Deploy the best of existing techniques allowing to get an optimal balance between security and functionality.
Current Section

1 Introduction
 ● Context and Goal
 ● Problem
 ● Our Contribution

2 Policy Configuration
 ● System modeling
 ● Policy modeling
 ● Policy conflict detection
 ● Policy satisfaction

3 Conclusion and future work
System modeling

\[\langle \mathcal{D}, \mathcal{T}, \mathcal{A}, \mathcal{F}, \mathcal{L}, \mathcal{E} \rangle \]

- \(\mathcal{D} \): a relational database
- \(\mathcal{T} = \{ T_1, \ldots, T_n \} \): a finite set of relational tables
- \(\mathcal{A} = \{ A_{T_1}, \ldots, A_{T_n} \} \): a finite set attributes
 - \(A_{T_i} = \{ a_{1,i}, \ldots, a_{m,i} \} \) represents the set of attributes of the relational table \(T_i \)
- \(\mathcal{L} \): a finite set of security levels
- \(\mathcal{F} \): a finite set of functional requirements that can be required over the data.
- \(\mathcal{E} \): a finite set of encryption schemes
 - \(L_i \in \mathcal{L} \): a security layer that provides
 - \(F_i \subseteq \mathcal{F} \): a set of provided functional requirements
Policy modeling

Security constraints

- Confidentiality constraint
 - Defined over a relational table $T_i \in \mathcal{T}$
 - Represented by a set of attributes, e.g. $CC = \{a_1, \ldots, a_n\} \subseteq A_{T_i}$
 - States that the value assumed by the attributes in CC is considered sensitive

- Security threshold constraint
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g. $TC_{a_i} = l, l \in \mathcal{L}$.
 - Four security levels can be used to classify the data
 - Top secret \rightarrow RND
 - Secret \rightarrow DET
 - Confidential \rightarrow OPE
 - Unclassified \rightarrow cleartext value
Security constraints

- **Confidentiality constraint**
 - Defined over a relational table \(T_i \in \mathcal{T} \)
 - Represented by a set of attributes, e.g.
 \[CC = \{a_1, \cdots, a_n\} \subseteq A_{T_i} \]
 - States that the value assumed by the attributes in \(CC \) is considered sensitive

- **Security threshold constraint**
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g.
 \[TC_{a_i} = l, l \in \mathcal{L} \]
 - Four security levels can be used to classify the data
 - Top secret \(\rightarrow \) RND
 - Secret \(\rightarrow \) DET
 - Confidential \(\rightarrow \) OPE
 - Unclassified \(\rightarrow \) cleartext value
Policy modeling

Security constraints

- Confidentiality constraint
 - Defined over a relational table \(T_i \in \mathcal{T} \)
 - Represented by a set of attributes, e.g. \(CC = \{a_1, \ldots, a_n\} \subseteq A_{T_i} \)
 - States that the value assumed by the attributes in \(CC \) is considered sensitive

- Security threshold constraint
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g. \(TC_{a_i} = l, l \in \mathcal{L} \).
 - Four security levels can be used to classify the data:
 - Top secret \(\rightarrow \) RND
 - Secret \(\rightarrow \) DET
 - Confidential \(\rightarrow \) OPE
 - Unclassified \(\rightarrow \) cleartext value
Policy modeling

Security constraints

- **Confidentiality constraint**
 - Defined over a relational table $T_i \in \mathcal{T}$
 - Represented by a set of attributes, e.g.
 $$CC = \{a_1, \cdots, a_n\} \subseteq A_{T_i}$$
 - States that the value assumed by the attributes in CC is considered sensitive

- **Security threshold constraint**
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g.
 $$TC_{a_i} = l, l \in \mathcal{L}.$$
 - Four security levels can be used to classify the data
 - Top secret \rightarrow RND
 - Secret \rightarrow DET
 - Confidential \rightarrow OPE
 - Unclassified \rightarrow cleartext value
Security constraints

- **Confidentiality constraint**
 - Defined over a relational table $T_i \in \mathcal{T}$
 - Represented by a set of attributes, e.g., $CC = \{a_1, \ldots, a_n\} \subseteq A_{T_i}$
 - States that the value assumed by the attributes in CC is considered sensitive

- **Security threshold constraint**
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g., $TC_{a_i} = l, l \in \mathcal{L}$.
 - Four security levels can be used to classify the data
 - Top secret \rightarrow RND
 - Secret \rightarrow DET
 - Confidential \rightarrow OPE
 - Unclassified \rightarrow cleartext value
Policy modeling

<table>
<thead>
<tr>
<th>Security constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidentiality constraint</td>
</tr>
<tr>
<td>Defined over a relational table $T_i \in \mathcal{T}$</td>
</tr>
<tr>
<td>Represented by a set of attributes, e.g. $CC = {a_1, \cdots, a_n} \subseteq A_{T_i}$</td>
</tr>
<tr>
<td>States that the value assumed by the attributes in CC is considered sensitive</td>
</tr>
<tr>
<td>Security threshold constraint</td>
</tr>
<tr>
<td>Defined over an attribute</td>
</tr>
<tr>
<td>Allow the data owner to specify a security level threshold for each sensitive attribute, e.g. $TC_{a_i} = l, l \in \mathcal{L}$.</td>
</tr>
<tr>
<td>Four security levels can be used to classify the data</td>
</tr>
<tr>
<td>- Top secret \rightarrow RND</td>
</tr>
<tr>
<td>- Secret \rightarrow DET</td>
</tr>
<tr>
<td>- Confidential \rightarrow OPE</td>
</tr>
<tr>
<td>- Unclassified \rightarrow cleartext value</td>
</tr>
</tbody>
</table>
Security constraints

- **Confidentiality constraint**
 - Defined over a relational table $T_i \in \mathcal{T}$
 - Represented by a set of attributes, e.g. $CC = \{a_1, \ldots, a_n\} \subseteq A_{T_i}$
 - States that the value assumed by the attributes in CC is considered sensitive

- **Security threshold constraint**
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g. $TC_{a_i} = l, l \in L$.
 - Four security levels can be used to classify the data
 - Top secret → RND
 - Secret → DET
 - Confidential → OPE
 - Unclassified → cleartext value
Policy modeling

Security constraints

- Confidentiality constraint
 - Defined over a relational table $T_i \in \mathcal{T}$
 - Represented by a set of attributes, e.g. $CC = \{a_1, \ldots, a_n\} \subseteq A_{T_i}$
 - States that the value assumed by the attributes in CC is considered sensitive

- Security threshold constraint
 - Defined over an attribute
 - Allow the data owner to specify a security level threshold for each sensitive attribute, e.g. $TC_{a_i} = l, l \in \mathcal{L}$.
 - Four security levels can be used to classify the data
 - Top secret \rightarrow RND
 - Secret \rightarrow DET
 - Confidential \rightarrow OPE
 - Unclassified \rightarrow cleartext value
Utility constraint

- Defined over an attribute $a_i \in \mathcal{A}$.
- Require that some functionalities must be provided for the attribute a_i, e.g. $UC_{a_i} = \{f_1, \cdots, f_n\}, f_i \in \mathcal{F}$.
Example: Banking Scenario

- $T_1(\text{SSN, Job, Address, Balance})$.
 - The account balance for a customer should always remain top secret.
 - The SSN of a customer should always remain secret.
 - All other information in the T_1 are unclassified.
 - Example of queries to be executed efficiently over T_1:
 - **Q1:**
      ```sql
      SELECT (T1_Balance + 100) 
      WHERE SSN = '321654789756'
      ```
 - **Q2:**
      ```sql
      SELECT T1_SSN 
      WHERE T1_Balance = 40000
      ```
Example: Banking Scenario

$T_1(\text{SSN, Job, Adress, Balance})$.

- The account balance for a customer should always remain top secret.
- The SSN of a customer should always remain secret.
- All other information in the T_1 are unclassified.

Example of queries to be executed efficiently over T_1:

Q1:
SELECT ($T_1_{\text{Balance}} + 100)$
WHERE SSN = '321654789756'

Q2:
SELECT T_1_{SSN}
WHERE $T_1_{\text{Balance}} = 40000$
Example: Banking Scenario

$T_1(\text{SSN, Job, Address, Balance})$.

- The account balance for a customer should always remain top secret.
- The SSN of a customer should always remain secret.
- All other information in the T_1 are unclassified.

Example of queries to be executed efficiently over T_1:

Q1:
SELECT (T_1_Balance + 100)
WHERE SSN = '321654789756'

Q2:
SELECT T_1_SSN
WHERE T_1_Balance = 40000

Policy specification

$CC_{T_1} = \{\text{SSN, Balance}\}$
Example: Banking Scenario

$T_1(\text{SSN}, \text{Job}, \text{Address}, \text{Balance})$.

- The account balance for a customer should always remain top secret.
- The SSN of a customer should always remain secret.
- All other information in the T_1 are unclassified.

Example of queries to be executed efficiently over T_1:

Q1:
SELECT (T_1Balance + 100)
WHERE SSN = '321654789756'

Q2:
SELECT T_1SSN
WHERE T_1Balance = 40000

Policy specification

$CC_{T_1} = \{\text{SSN, Balance}\}$

$TC_{Balance} = \{\text{RND}\}$
Example: Banking Scenario

- $T_1(\text{SSN}, \text{Job}, \text{Address}, \text{Balance})$.
 - The account balance for a customer should always remain top secret.
 - The SSN of a customer should always remain secret.
 - All other information in the T_1 are unclassified.

- Example of queries to be executed efficiently over T_1:
 - Q1:
 SELECT (T_1_Balance + 100)
 WHERE SSN = '321654789756'
 - Q2:
 SELECT T_1_SSN
 WHERE T_1_Balance = 40000

Policy specification

- $\text{CC}_{T_1} = \{ \text{SSN, Balance} \}$
- $\text{TC}_{\text{Balance}} = \{ \text{RND} \}$
- $\text{TC}_{\text{SSN}} = \{ \text{DET} \}$
Example: Banking Scenario

$T_1 (SSN, \text{Job}, \text{Address}, \text{Balance})$.

- The account balance for a customer should always remain top secret.
- The SSN of a customer should always remain secret.
- All other information in the T_1 are unclassified.

Example of queries to be executed efficiently over T_1:

Q1:
SELECT $(T_1_\text{Balance} + 100)$
WHERE SSN = '321654789756'

Q2:
SELECT T_1_SSN
WHERE $T_1_\text{Balance} = 40000$

Policy specification

$CC_{T_1} = \{\text{SSN, Balance}\}$

$TC_{\text{Balance}} = \{\text{RND}\}$

$TC_{\text{SSN}} = \{\text{DET}\}$

$UC_{\text{Balance}} = \{\text{addition, equality}\}$
Example: Banking Scenario

- \(T_1(\text{SSN}, \text{Job}, \text{Address}, \text{Balance}) \).
 - The account balance for a customer should always remain top secret.
 - The SSN of a customer should always remain secret.
 - All other information in the \(T_1 \) are unclassified.
 - Example of queries to be executed efficiently over \(T_1 \):

Q1:
SELECT \(T_1._\text{Balance} + 100 \)
WHERE SSN = '321654789756'

Q2:
SELECT \(T_1._\text{SSN} \)
WHERE \(T_1._\text{Balance} = 40000 \)

Policy specification

\[
CC_{T_1} = \{ \text{SSN, Balance} \}
\]

\[
TC_{\text{Balance}} = \{ \text{RND} \}
\]

\[
TC_{\text{SSN}} = \{ \text{DET} \}
\]

\[
UC_{\text{Balance}} = \{ \text{addition, equality} \}
\]

\[
UC_{\text{SSN}} = \{ \text{equality} \}
\]
Policy conflict detection

- The objectives of two or more constraints cannot be simultaneously satisfied.
- Conflicts may occur between security threshold constraints and utility constraints defined over the same attribute.

Definition

Consider a threshold constraint $TC_a = l, l \in \mathcal{L}$ and an utility constraint $UC_a = \{f_1, \cdots, f_n\}$ defined over the attribute a. TC_a and UC_a are in conflict iff $\{f_1, \cdots, f_n\} \not\subseteq F_I$ with $F_I = \bigcup_{E_i \in \mathcal{E}} F_{E_i}$, where l_{E_i} is as much secure as l.
Policy conflict detection

- The objectives of two or more constraints cannot be simultaneously satisfied.
- Conflicts may occur between security threshold constraints and utility constraints defined over the same attribute.

Definition

Consider a threshold constraint $TC_a = l, l \in \mathcal{L}$ and an utility constraint $UC_a = \{f_1, \cdots, f_n\}$ defined over the attribute a. TC_a and UC_a are in conflict iff $\{f_1, \cdots, f_n\} \not\subseteq F_l$ with $F_l = \bigcup_{E_i \in \mathcal{E}} F_{E_i}$, where l_{E_i} is as much secure as l.
Example of policy conflict detection
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition, order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ addition, order search \} \]
\[UC_{SSN} = \{ equality \} \]
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition, order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = 0 \)
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition, order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = 0 \)

Paillier:
- \(I_{Plir} = RND \)
- \(F_{Plir} = \{ \text{SUM, AVG, computation} \} \)
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition, order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = RND \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(I_{SSE} = RND \)
- \(F_{SSE} = \{ \text{like} \} \)
Example of policy conflict detection

Policy specification

$CC_{T_1} = \{SSN, Balance\}$

$TC_{Balance} = \{RND\}$

$TC_{SSN} = \{DET\}$

$UC_{Balance} = \{\text{addition, order search}\}$

$UC_{SSN} = \{\text{equality}\}$

Encryption toolbox

AES-CBC:
- $l_{AES} = \text{RND}$
- $F_{AES} = \emptyset$

Paillier:
- $l_{Plr} = \text{RND}$
- $F_{Plr} = \{\text{SUM, AVG, computation}\}$

SSE:
- $l_{SSE} = \text{RND}$
- $F_{SSE} = \{\text{like}\}$

Pohlig-Hellman:
- $l_{PH} = \text{DET}$
- $F_{PH} = \{\text{equality, join, group by}\}$
Example of policy conflict detection

Policy specification

- \(CC_{T_1} = \{ SSN, Balance \} \)
- \(TC_{Balance} = \{ RND \} \)
- \(TC_{SSN} = \{ DET \} \)
- \(UC_{Balance} = \{ addition, order \ search \} \)
- \(UC_{SSN} = \{ equality \} \)

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = RND \)
- \(F_{Plr} = \{ \text{SUM}, \text{AVG}, \text{computation} \} \)

SSE:
- \(I_{SSE} = RND \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(I_{PH} = DET \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(I_{Bdv} = OPE \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition, order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]

First step:

Encryption toolbox

AES-CBC:
- \(l_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(l_{Plr} = RND \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(l_{SSE} = RND \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = DET \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(l_{Bdv} = OPE \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]

\[TC_{Balance} = \{ RND \} \]

\[TC_{SSN} = \{ DET \} \]

\[UC_{Balance} = \{ addition, order search \} \]

\[UC_{SSN} = \{ equality \} \]

First step:

\[F_{RND} = \{ SUM, AVG, computation, like \} \]

Encryption toolbox

AES-CBC:
- \(l_{AES} = RND \)
- \(F_{AES} = 0 \)

Paillier:
- \(l_{Plr} = RND \)
- \(F_{Plr} = \{ SUM, AVG, computation \} \)

SSE:
- \(l_{SSE} = RND \)
- \(F_{SSE} = \{ like \} \)

Pohlig-Hellman:
- \(l_{PH} = DET \)
- \(F_{PH} = \{ equality, join, group by \} \)

Boldyreva:
- \(l_{Bdv} = OPE \)
- \(F_{Bdv} = \{ equality, join, group by, order \} \)
Example of policy conflict detection

Policy specification

\[
CC_{T_1} = \{\text{SSN, Balance}\}
\]
\[
TC_{\text{Balance}} = \{\text{RND}\}
\]
\[
TC_{\text{SSN}} = \{\text{DET}\}
\]
\[
UC_{\text{Balance}} = \{\text{addition, order search}\}
\]
\[
UC_{\text{SSN}} = \{\text{equality}\}
\]

Encryption toolbox

AES-CBC:
- \(l_{AES} = \text{RND}\)
- \(F_{AES} = 0\)

Paillier:
- \(l_{Plr} = \text{RND}\)
- \(F_{Plr} = \{\text{SUM, AVG, computation}\}\)

SSE:
- \(l_{SSE} = \text{RND}\)
- \(F_{SSE} = \{\text{like}\}\)

Pohlig-Hellman:
- \(l_{PH} = \text{DET}\)
- \(F_{PH} = \{\text{equality, join, group by}\}\)

Boldyreva:
- \(l_{Bdv} = \text{OPE}\)
- \(F_{Bdv} = \{\text{equality, join, group by, order}\}\)

First step:

\[
F_{\text{RND}} = \{\text{SUM, AVG, computation, like}\}
\]
\[
F_{\text{DET}} = \{\text{SUM, AVG, computation, like, equality, join, group by}\}
\]
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ \text{addition}, \text{order search} \} \]
\[UC_{SSN} = \{ \text{equality} \} \]

Encryption toolbox

AES-CBC:
- \(l_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(l_{Plr} = RND \)
- \(F_{Plr} = \{ \text{SUM}, \text{AVG}, \text{computation} \} \)

SSE:
- \(l_{SSE} = RND \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = DET \)
- \(F_{PH} = \{ \text{equality}, \text{join}, \text{group by} \} \)

Boldyreva:
- \(l_{Bdv} = OPE \)
- \(F_{Bdv} = \{ \text{equality}, \text{join}, \text{group by}, \text{order} \} \)

First step:
\[F_{RND} = \{ \text{SUM}, \text{AVG}, \text{computation}, \text{like} \} \]
\[F_{DET} = \{ \text{SUM}, \text{AVG}, \text{computation}, \text{like}, \text{equality}, \text{join}, \text{group by} \} \]

Second step:
\[UC_{Balance} \subseteq F_{RND} \]
\[UC_{SSN} \subseteq F_{DET} \]
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ addition, order search \} \]
\[UC_{SSN} = \{ equality \} \]

First step:
\[F_{RND} = \{ SUM, AVG, computation, like \} \]
\[F_{DET} = \{ SUM, AVG, computation, like, equality, join, group by \} \]

Second step:
\[UC_{Balance} \subseteq F_{RND} \quad \rightarrow \quad \text{False} \]
\[UC_{SSN} \subseteq F_{DET} \quad \rightarrow \quad \text{True} \]

Encryption toolbox

AES-CBC:
- \(l_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(l_{Plr} = RND \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(l_{SSE} = RND \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = DET \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(l_{Bdv} = OPE \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Example of policy conflict detection

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ RND \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{Balance} = \{ addition, order search \} \]
\[UC_{SSN} = \{ equality \} \]

First step:

\[F_{RND} = \{ SUM, AVG, computation, like \} \]
\[F_{DET} = \{ SUM, AVG, computation, like equality, join, group by \} \]

Second step:

\[UC_{Balance} \subseteq F_{RND} \quad \rightarrow \text{False} \]
\[UC_{SSN} \subseteq F_{DET} \quad \rightarrow \text{True} \]

\(\Rightarrow \) \(UC_{Balance} \) and \(TC_{Balance} \) are in conflict.

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = RND \)
- \(F_{Plr} = \{ SUM, AVG, computation \} \)

SSE:
- \(I_{SSE} = RND \)
- \(F_{SSE} = \{ like \} \)

Pohlig-Hellman:
- \(I_{PH} = DET \)
- \(F_{PH} = \{ equality, join, group by \} \)

Boldyreva:
- \(I_{Bdv} = OPE \)
- \(F_{Bdv} = \{ equality, join, group by, order \} \)
Policy satisfaction

Goal: Find the best combination of encryption schemes that can satisfy the set of security and utility constraints.

- A combination of encryption schemes is a subset $C \subseteq \mathcal{E}$.
- Let $C = \{E_1, \cdots, E_n\}$, l_i be the security level provided by the encryption scheme E_i, $1 \leq i \leq n$. The security level provided by the application of C is l iff:
 - $l \in \{l_1, \cdots, l_n\}$
 - $\forall l_j \in \{l_1, \cdots, l_n\}, l_j$ is at least as secure as l
- The best combination of encryption schemes:
 - Satisfies the required utility requirements
 - Provides the highest level of protection for sensitive data
 - Contains the minimal the number of involved encryption schemes

\Rightarrow NP-hard problem (minimum hyper-graph coloring problem).
Policy satisfaction

Goal: Find the best combination of encryption schemes that can satisfy the set of security and utility constraints.

- A combination of encryption schemes is a subset $C \subseteq E$.
- Let $C = \{E_1, \ldots, E_n\}$, l_i be the security level provided by the encryption scheme E_i, $1 \leq i \leq n$. The security level provided by the application of C is l iff:
 - $l \in \{l_1, \ldots, l_n\}$
 - $\forall l_j \in \{l_1, \ldots, l_n\}, l_j$ is at least as secure as l
- The best combination of encryption schemes:
 - Satisfies the required utility requirements
 - Provides the highest level of protection for sensitive data
 - Contains the minimal the number of involved encryption schemes
 \Rightarrow NP-hard problem (minimum hyper-graph coloring problem).
Policy satisfaction

Goal: Find the best combination of encryption schemes that can satisfy the set of security and utility constraints.

- A combination of encryption schemes is a subset $C \subseteq E$.
- Let $C = \{E_1, \cdots, E_n\}$, l_i be the security level provided by the encryption scheme E_i, $1 \leq i \leq n$. The security level provided by the application of C is l iff:
 - $l \in \{l_1, \cdots l_n\}$
 - $\forall l_j \in \{l_1, \cdots l_n\}, l_j$ is at least as secure as l

- The best combination of encryption schemes:
 - Satisfies the required utility requirements
 - Provides the highest level of protection for sensitive data
 - Contains the minimal the number of involved encryption schemes

\Rightarrow NP-hard problem (minimum hyper-graph coloring problem).
Policy satisfaction

Goal: Find the best combination of encryption schemes that can satisfy the set of security and utility constraints.

- A combination of encryption schemes is a subset $C \subseteq \mathcal{E}$.
- Let $C = \{E_1, \cdots, E_n\}$, l_i be the security level provided by the encryption scheme E_i, $1 \leq i \leq n$. The security level provided by the application of C is l iff:
 - $l \in \{l_1, \cdots, l_n\}$
 - $\forall l_j \in \{l_1, \cdots, l_n\}, l_j$ is at least as secure as l

- The best combination of encryption schemes:
 - Satisfies the required utility requirements
 - Provides the highest level of protection for sensitive data
 - Contains the minimal number of involved encryption schemes

\Rightarrow NP-hard problem (minimum hyper-graph coloring problem).
Policy satisfaction

Goal: Find the best combination of encryption schemes that can satisfy the set of security and utility constraints.

- A combination of encryption schemes is a subset $C \subseteq E$.
- Let $C = \{E_1, \ldots, E_n\}$, l_i be the security level provided by the encryption scheme E_i, $1 \leq i \leq n$. The security level provided by the application of C is l iff:
 - $l \in \{l_1, \ldots l_n\}$
 - $\forall l_j \in \{l_1, \ldots l_n\}, l_j$ is at least as secure as l

The best combination of encryption schemes:
- Satisfies the required utility requirements
- Provides the highest level of protection for sensitive data
- Contains the minimal the number of involved encryption schemes

\Rightarrow NP-hard problem (minimum hyper-graph coloring problem).
Heuristic search

- Build a solution to the problem step by step from scratch

- For each sensitive attribute a, choose for each iteration, the best satisfier of the chosen policy
 - Satisfies the threshold constraint defined over a
 - Satisfies the highest number of functionalities compared to other encryption schemes

- Complexity: polynomial time.
Policy satisfaction: Example
Policy satisfaction: Example

Policy specification

\[
CC_{T_1} = \{\text{SSN}, \text{Balance}\}
\]

\[
TC_{\text{Balance}} = \{\text{OPE}\}
\]

\[
UC_{\text{Balance}} = \{\text{computation}, \text{order},

\text{equality}, \text{AVG}, \text{group by}\}
\]

\[
TC_{\text{SSN}} = \{\text{DET}\}
\]

\[
UC_{\text{SSN}} = \{\text{equality}, \text{like}\}
\]
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{ \text{SSN, Balance} \} \]
\[TC_{\text{Balance}} = \{ \text{OPE} \} \]
\[UC_{\text{Balance}} = \{ \text{computation, order, equality, AVG, group by} \} \]
\[TC_{\text{SSN}} = \{ \text{DET} \} \]
\[UC_{\text{SSN}} = \{ \text{equality, like} \} \]

Encryption toolbox

AES-CBC:
- \(l_{AES} = \text{RND} \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(l_{Plr} = \text{RND} \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(l_{SSE} = \text{RND} \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = \text{DET} \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(l_{Bdv} = \text{OPE} \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ OPE \} \]
\[UC_{Balance} = \{ computation, order, equality, AVG, group by \} \]
\[TC_{SSN} = \{ DET \} \]
\[UC_{SSN} = \{ equality, like \} \]

Attribute Balance:

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = RND \)
- \(F_{Plr} = \{ SUM, AVG, computation \} \)

SSE:
- \(I_{SSE} = RND \)
- \(F_{SSE} = \{ like \} \)

Pohlig-Hellman:
- \(I_{PH} = DET \)
- \(F_{PH} = \{ equality, join, group by \} \)

Boldyreva:
- \(I_{Bdv} = OPE \)
- \(F_{Bdv} = \{ equality, join, group by, order \} \)
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{ \text{SSN, Balance} \} \]
\[TC_{Balance} = \{ \text{OPE} \} \]
\[UC_{Balance} = \{ \text{computation, order, equality, AVG, group by} \} \]
\[TC_{SSN} = \{ \text{DET} \} \]
\[UC_{SSN} = \{ \text{equality, like} \} \]

Attribute Balance:

Encryption toolbox

AES-CBC:
- \(l_{AES} = \text{RND} \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(l_{Plr} = \text{RND} \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(l_{SSE} = \text{RND} \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = \text{DET} \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(l_{Bdv} = \text{OPE} \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Policy satisfaction: Example

Policy specification

$CC_{T_1} = \{ \text{SSN, Balance} \}$

$TC_{\text{Balance}} = \{ \text{OPE} \}$

$UC_{\text{Balance}} = \{ \text{computation, order, equality, AVG, group by} \}$

$TC_{\text{SSN}} = \{ \text{DET} \}$

$UC_{\text{SSN}} = \{ \text{equality, like} \}$

Attribute Balance:
- Boldyreva

Encryption toolbox

AES-CBC:
- $I_{AES} = \text{RND}$
- $F_{AES} = \emptyset$

Paillier:
- $I_{Plr} = \text{RND}$
- $F_{Plr} = \{ \text{SUM, AVG, computation} \}$

SSE:
- $I_{SSE} = \text{RND}$
- $F_{SSE} = \{ \text{like} \}$

Pohlig-Hellman:
- $I_{PH} = \text{DET}$
- $F_{PH} = \{ \text{equality, join, group by} \}$

Boldyreva:
- $I_{Bdv} = \text{OPE}$
- $F_{Bdv} = \{ \text{equality, join, group by, order} \}$
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{ \text{SSN, Balance} \} \]
\[TC_{Balance} = \{ \text{OPE} \} \]
\[UC_{Balance} = \{ \text{computation, order, equality, AVG, group by} \} \]
\[TC_{SSN} = \{ \text{DET} \} \]
\[UC_{SSN} = \{ \text{equality, like} \} \]

Attribute Balance:
- Boldyreva

Encryption toolbox

AES-CBC:
- \(l_{AES} = \text{RND} \)
- \(F_{AES} = \emptyset \)

Paiillier:
- \(l_{Plr} = \text{RND} \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(l_{SSE} = \text{RND} \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(l_{PH} = \text{DET} \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(l_{Bdv} = \text{OPE} \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Policy specification

\[CC_{T_1} = \{SSN, Balance\} \]
\[TC_{Balance} = \{OPE\} \]
\[UC_{Balance} = \{computation, order, equality, AVG, group by\} \]
\[TC_{SSN} = \{DET\} \]
\[UC_{SSN} = \{equality, like\} \]

Attribute Balance:
- Boldyreva
- Paillier

Encryption toolbox

AES-CBC:
- \(I_{AES} = RND \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = RND \)
- \(F_{Plr} = \{SUM, AVG, computation\} \)

SSE:
- \(I_{SSE} = RND \)
- \(F_{SSE} = \{like\} \)

Pohlig-Hellman:
- \(I_{PH} = DET \)
- \(F_{PH} = \{equality, join, group by\} \)

Boldyreva:
- \(I_{Bdv} = OPE \)
- \(F_{Bdv} = \{equality, join, group by, order\} \)
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{SSN, Balance\} \]
\[TC_{Balance} = \{OPE\} \]
\[UC_{Balance} = \{\text{computation, order, equality, AVG, group by}\} \]
\[TC_{SSN} = \{DET\} \]
\[UC_{SSN} = \{\text{equality, like}\} \]

Attribute Balance:
- Boldyreva
- Paillier

Attribute SSN:

Encryption toolbox

AES-CBC:
- \(I_{AES} = \text{RND} \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = \text{RND} \)
- \(F_{Plr} = \{\text{SUM, AVG, computation}\} \)

SSE:
- \(I_{SSE} = \text{RND} \)
- \(F_{SSE} = \{\text{like}\} \)

Pohlig-Hellman:
- \(I_{PH} = \text{DET} \)
- \(F_{PH} = \{\text{equality, join, group by}\} \)

Boldyreva:
- \(I_{Bdv} = \text{OPE} \)
- \(F_{Bdv} = \{\text{equality, join, group by, order}\} \)
Policy satisfaction: Example

Policy specification

\[CC_{T_1} = \{ SSN, Balance \} \]
\[TC_{Balance} = \{ OPE \} \]
\[UC_{Balance} = \{ \text{computation, order, equality, AVG, group by} \} \]
\[TC_{SSN} = \{ \text{DET} \} \]
\[UC_{SSN} = \{ \text{equality, like} \} \]

Attribute Balance:
- Boldyreva
- Paillier

Attribute SSN:
- Pohlig-Hellman
- SSE

Encryption toolbox

AES-CBC:
- \(I_{AES} = \text{RND} \)
- \(F_{AES} = \emptyset \)

Paillier:
- \(I_{Plr} = \text{RND} \)
- \(F_{Plr} = \{ \text{SUM, AVG, computation} \} \)

SSE:
- \(I_{SSE} = \text{RND} \)
- \(F_{SSE} = \{ \text{like} \} \)

Pohlig-Hellman:
- \(I_{PH} = \text{DET} \)
- \(F_{PH} = \{ \text{equality, join, group by} \} \)

Boldyreva:
- \(I_{Bdv} = \text{OPE} \)
- \(F_{Bdv} = \{ \text{equality, join, group by, order} \} \)
Current Section

1. Introduction
 - Context and Goal
 - Problem
 - Our Contribution

2. Policy Configuration
 - System modeling
 - Policy modeling
 - Policy conflict detection
 - Policy satisfaction

3. Conclusion and future work
Conclusion and future work

- We present a set of algorithms allowing to:
 - Analyze security and utility requirements to detect possible conflicts
 - decide about the best acceptable trade-off between functionality and security requirements

- Future work
 - Combine encryption base mechanisms with other kind of security mechanisms, such as anonymization, watermarking, etc...
Questions